Date_______ Block_____

1. Why does the acceleration due to gravity have a negative value?
2. With your lab partner, calculate your reaction time using only a ruler. Have your lab partner hold the ruler vertically with the " 0 " of the ruler even with the top of your hand. Your thumb should be stretched away from the rest of your fingers. Then, your partner should unexpectedly drop the ruler. When/If you catch it, note how far the ruler has fallen and calculate your reaction time. Each partner should do this calculation for him/herself.
3. For fun, try this with a crisp, straight dollar bill and see if you can catch it before it falls. What is the reaction time needed in order to catch a dollar bill?
4. An object is thrown straight up into the air. If the object travels 20 m just before it starts to come back down, what was the initial velocity of the object?
5. A tennis ball is thrown straight up and caught. If the total time of flight is 2.6 s , what was the ball's initial velocity?
6. A ball is dropped from a helicopter and falls for 12 seconds before hitting the ground. Please tell (a) vat 1 s (b) v at $2 \mathrm{~s} \ldots$ and each successive second thereafter, including the $12^{\text {th }}$ second (no need to show calculations once you see the pattern) (c) height of the helicopter.
(a)

Time (s)	Velocity $(\mathrm{m} / \mathrm{s})$
0	0
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

7. A marble dropped from a bridge strikes the water in 5 s . Calculate (a) the speed with which it strikes and (b) the height of the bridge.
(a)
(b)
