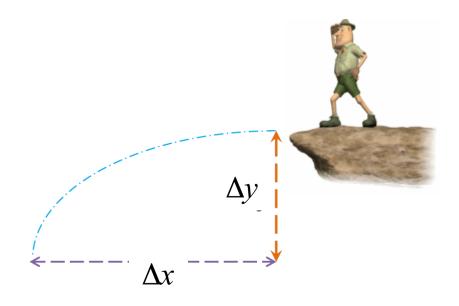
Reivew: Solving Projectile Motion Problems


$\Delta x = \frac{1}{2}at^2 + v_i t$	Variable	Name	Unit
	Δx		
$v_f = at + v_i$	Vi		
$v_f^2 = v_i^2 + 2a\Delta x$	v_{f}		
$v_x = \Delta x/t$	а		
	t		
$\Delta x_{y} = \frac{1}{2}at^{2} + v_{iy}t$	Δx_y		
$v_{fy} = at + v_{iy}$	Viy		
$v_{fy}^2 = v_{iy}^2 + 2a\Delta x_y$	\mathbf{v}_{fy}		
	g		

Examples:

1. A rock is thrown horizontally from the top of a cliff at 150 m/s. a) How long does it take the rock to fall 45 m vertically?

b) Find the rock's vertical velocity at 45 meters.

c) What was the rock's horizontal displacement after falling 45 m?

2. A baseball is thrown horizontally from a grandstand 20 m above the ground at a speed of 10 m/s.

a) How long will the ball remain in flight before reaching the ground?

b) What is the projectile's maximum range before it hits the ground?